According to this article, new ceramic technology may provide a breakthrough with in situ shale oil development.
Of course, this would not be a good development with respect to carbon emissions. However, from a EROEI, as well as certain environmental concerns (water, subsidence, mining residues), it seems to be quite promising. And domestic energy production is quite good for many geopolitical concerns, the US current account deficit, and the economy as a whole.The process involves no mining, uses less water than other approaches, and doesn't leave behind man-made mountains of kerogen-sapped shale. And according to a Rand Corporation study, it can also be done at a third of the cost of mining and surface processing. One technical hitch, however, lies with the heater cable employed. The most common cables used today are insulated with a layer of magnesium oxide, which can deform, degrade, and ultimately short out over time under intense heat, constant exposure to moisture, and the occasional shifting of rock at great depths. Replacement and maintenance can be costly.
Handling such extremes requires "a combination of properties not currently available on the market," says Joe Culver, an official with the Department of Energy (DOE), which considers oil shale vital to America's energy security. In Colorado, Wyoming, and Utah alone, deposits equate to more than 800 billion barrels of recoverable crude.
Composite Technology Development of Lafayette, CO, set out to tackle the cable insulation challenge using a woven ceramic-fiber tape that gets wrapped around copper wiring. The ceramic insulation is a composite material that consists of ceramic fibers and an inorganic ceramic matrix that binds the fibers together. "It's our secret sauce," says executive vice president Mike Tupper, explaining that the fibers can also come braided or in the form of cloth, depending on the application.
No comments:
Post a Comment